Ultra low IQ Synchronous Boost Convertor

General Description

The LP6260 device is a synchronous boost convertor with ultra-low quiescent current. It features a true-shutoff function that disconnects the input and output during shutdown and output short-circuit conditions.

LowPowerSemi 微源半導體

The LP6260 only consumes 1uA quiescent current under light load condition and can achieve up to 75% efficiency at 20uA load. It can achieve up to 93% efficiency at 200mA load from 3.3 V to 5V conversion.

Features

- 5.1V output voltage
- Up to 95% efficiency
- Output to Input Disconnect at Shutdown Mode

LP6260

- Shut-down current:<0.1uA</p>
- Over Output Voltage Protection
- Over Current Protection
- Over Temperature Protection
- Internal Compensation of Soft-start
- 1.2MHz fixed frequency switching

Order Information

Typical Application Circuit

Applications

- ♦ Tablet, MID
- ♦ Smart Phone
- ♦ Power Bank

Marking Information

Device	Marking	Package	Shipping
LP6260QVF	6260	TDFN-6	4K/REEL
	YWX		
Marking indication: Y:Production year W:Production week X: Series Number			

GND

Functional Pin Description

Package Type	Pin Configurations
TDFN-6	GND 1 6 VIN VOUT 2 7 5 SW NC 3 6 EN TDFN-6 (Top View)

Pin Description

Pin No.	Name	Description
1	GND	Ground pin.
2	VOUT	Voltage output pin.
3	NC	Connect to GND.
4	EN	Chip enable pin. Logic high voltage enables the device; logic low voltage disables the device. Do not leave it floating.
5	SW	Pin for switching.
6	VIN	Voltage supply input pin.

Absolute Maximum Ratings Note 1

\diamond	VIN and EN to GND	6.5V
\diamond	VOUT to GND	8V
\diamond	SW to GND	10V
\diamond	Maximum Junction Temperature	150°C
\diamond	Operating Ambient Temperature Range (T _A)	40°C to 85°C
\diamond	Maximum Soldering Temperature (at leads, 10 sec)	260°C

Thermal Information

\diamond	Maximum Power Dissipation (TDFN-6, P _D ,T _A =25°C)	1.2W
\diamond	Thermal Resistance (TDFN-6, J _A)	95°C/W

ESD Susceptibility

\diamond	HBM(Human Body Mode)2	2KV
\diamond	/M(Machine Mode) 20	00V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(V_{IN}=3.5V, C_{IN}=10uF, C_{OUT}=22uF, L=2.2uH)

Parameter	Condition	Min	Тур	Max	Units
Output Voltage		5.0	5.1	5.2	V
Supply Voltage		1		5	V
Input UVLO	I _{OUT} =1mA		0.8		V
Supply Current	V _{EN} =High, V _{IN} =5V, No load		1		uA
Supply Current(Shutdown)	V _{EN} =0V, V _{IN} =5V		0.05	1	uA
Switching Frequency			1200		KHz
EN Input Low Voltage				0.3	V
EN Input High Voltage		1.4			V
EN Input Current	V _{EN} =5V		0.1		uA
Low-side Current Limit	V _{IN} =3.5V		1		Α
Star-up Current Limit			1		Α
High-side On Resistance	I _{DS} =-100mA		160		mΩ
Low-side On Resistance	I _{DS} =100mA		220		mΩ
Thermal Shutdown			150		°C
Thermal Shutdown Hysteresis	aman0ami 2些方记	5 212 3	25		°C

Application Information

The LP6260 uses a synchronous 1.2MHz fixed frequency with 1uA ultra-low quiescent current. It is designed for alkaline battery, coin-cell battery, Li-ion or Li-polymer battery powered systems, which requires long battery running time and tiny solution size.

The LP6260 uses cycle-by-cycle overcurrent protection. If the inductor peak current reaches the current limit, the chip turns off the main switch to stop the further increase in input current. In this case, the output voltage will decrease until the power balance between the input and output is reached.

Short-Circuit Protection

Unlike most boost converters, the LP6260 allows output shorts. In the case of a short circuit, the LP6260 first turns off the NMOS when the current detected by the chip reaches the current limit. When VOUT falls below VIN, the device enters a linear mode of operation with the same current limit as the start-up period. In addition, the thermal shutdown circuits disable switching if the die temperature rises above 150°C.

Layout Guide

For high frequency switching power supplies, the PCB layout is important step in system application design. In order to let IC achieve good regulation, high efficiency and stability, it is strongly recommended the power components(Inductor, input and output capacitor) should be placed as close as possible to chip. The set races should be wide and short.

微源半導體

Packaging Information

TDFN-6

Nd

Е

E2

Κ

L

h

1.30BSC

2.00

1.00

_

0.25

0.20

2.10

1.10

_

0.30

0.25

1.90

0.90

0.20

0.20

0.15