

单片具有热调节功能的微型线性电池管理芯片

■ 产品概述

XT4067 是一个完善的单片锂离子电池恒流/恒压线性电源管理芯片。它薄的尺寸和小的外包装使它便于便携应用。 更值得一提的是,XT4067 专门设计适用于 USB 的供电规格。 得益于内部的 MOSFET 结构,在应用上不需要外部电阻和 阻塞二极管。

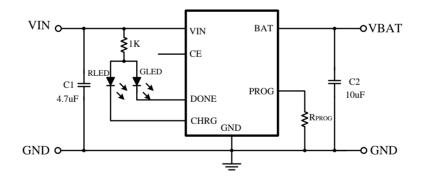
充电电压被限定在 4.2V, 充电电流通过外部电阻调节。 在达到目标充电电压后, 当充电电流降低到设定值的 1/10 时, XT4067 就会自动结束充电过程。当输入端(插头或 USB 提供电源) 拔掉后, XT4067 自动进入低电流状态, 电池漏 电流将降到 1μA 以下。XT4067 还可被设置于停止工作状态, 使电源供电电流降到 25μA。

XT4067 采用独特的内部专利结构确保了电池接反时芯片自动进入保护状态,确保 IC 不被击穿导致电池自放电引起事故。

其余特性包括: 充电电流监测,输入低电压闭锁,自动 重新充电和充电已满及开始充电的标志。

業桂 ■

- SOT23-6L
- DFN2020-8L


■ 典型应用电路

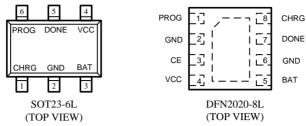
■ 用途

- 手机, PDA, MP3
- 导航仪
- 蓝牙应用

■ 产品特点

- 可编程使充电电流达 500mA
- 输入浪涌耐压 12V
- 不需要 MOSFET, 传感电阻和阻塞二极管
- 小的尺寸实现对锂离子电池的完全线性充电管理
- 恒电流/恒电压运行
- 从 USB 接口管理单片锂离子电池
- 预设充电电压为 4.2V, 精度 1%
- 充电状态指示标志
- 1/10 充电电流终止
- 停止工作时提供 25µA 电流
- 2.8V 涓流充电阈值电压
- 软启动限制浪涌电流
- 电池反接保护

■ 订购信息


XT4067 123456-7

标号	描述	标记	描述	标号	描述	标记	描述		
1	类型	F	有涓流充电	(5)	封装类型	М	SOT23-6L		
1						D	DFN2020-8L		
23	调整器输出电压	42	4.2V	6	@	(C)	现在十二	R	正面
	细軟界於山中工柱序	4	1.40/		器件方向	L	反面		
4)	④ 调整器输出电压精度 1 ±1% —	7	封装材料类型	G	绿料				

NO.: NL-QR-830-19 VER: 19C01 1 <u>www.natlinear.com</u>

■ 引脚分配

引脚-	引脚名称	
SOT23-6L	DFN2020-8L	刀腳石你
1	8	CHRG
2	2, 6	GND
3	5	BAT
4	4	VCC
5	7	DONE
6	1	PROG
-	3	CE

■ 引脚功能

CHRG:漏极开路充电状态输出。当充电时,CHRG端口被一个内置的 N 沟道 MOSFET 置于低电位。当充电完成时,CHRG 呈现高阻态。当 XT4067 检测到低电锁定条件时,CHRG 呈现高阻态。当在 BAT 引脚和地之间接一 1μF 的电容,就可以完成电池是否接好的指示,当没有电池时,LED 灯会快速闪烁。

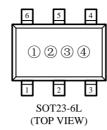
GND: 接地端

BAT: 充电电流输出端。给电池提供充电电流并控制浮动电压最终达到 4.2V。一个内部精密电阻把这个引脚同停工时自动断电的浮动电压分开。电池接反时,内部保护电路保护 VBAT 的 ESD 二极管不被烧坏,同时 GND 与 BAT 之间形成大约 0.7mA 电路。

<u>VCC</u>: 提供正电压输入。为充电器供电。VCC 可以为 4.25V 到 6.5V 并且必须有至少 1μF 的旁路电容。如果 VCC 引脚端电压低于 BAT 引脚电压 100 mV 时,XT4067 进入停工状态,并使 BAT 电流降到 2μA 以下。

DONE: 充满指示输出。当充满电时,DONE 端口被一个内置的 N 沟道 MOSFET 置于低电位。在充电过程中、检测到低电锁定条件时,DONE 呈现高阻状态。

PROG: 充电电流编程,充电电流监控和关闭端。充电电流由一个精度为 1%的接到地的电阻控制。在恒定充电电流状态时,此端口提供 1V 的电压。在所有状态下,此端口电压都可以用下面的公式测算充电电流: IBAT = (V_{PROG}/R_{PROG})×1000。


PROG 端口也可用来关闭充电器。把编程电阻同地端分离可以通过上拉的 3μA 电流源拉高 PROG 端口电压。当达到 1.21V 的极限停工电压值时,充电器进入停止工作状态,充电结束,输入电流降至 23μA。此端口悬空电压大约 2.4V。给此端口提供超过此电压值的电压,将获得 1.5 mA 的高电流。再使 PROG 和地端结合将使充电器回到正常状态。

CE: 充电使能脚, 当 CE 接 VCC 时, 允许充电。当 CE 接 GND 时, 禁止充电。

■ 打印信息

• SOT23-6L

项目	打印符号	描述
12	7F	XT4067F ◆◆◆
3	А	代表 VBAT 电压,精度±1%
4	X	生产定义,表示质量信息

DFN2020-8L

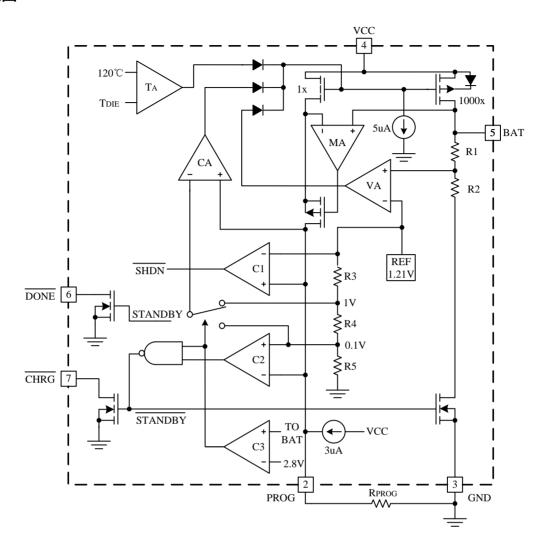
DFN2020-8L (TOP VIEW)

- 1、 第二行: 代表晶圆子版号
- 2、 第三行: 生产定义。

■ 绝对最大额定值

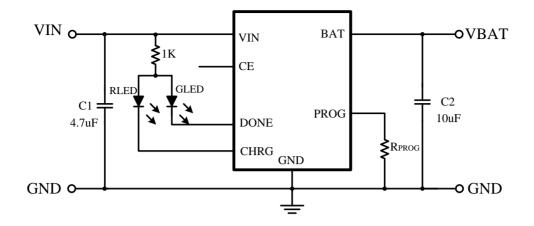
参数	标号	最大額	单位		
输入电压	V _{CC} -0.3∼12			V	
PROG 端电压 Vprog		-0.3~\			
BAT 端电压	Vbat	- 0.3∼12		V	
CHAG、DONE 端电压	Vchrg	- 0.3∼12			
容许功耗	P _D	SOT23-6L	250	mW	
谷叶切札		DFN2020-8L	600	TTIVV	
BAT 端电流	lbat	500		mA	
PROG 端电流	Iprog	800		uA	
工作外围温度	Тора	-40~+85		°C	
存储温度	Tstr	-65~	+125	C	

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。



■ 电学特性参数

参数	标号	条件	最低	典型	最高	UNIT
输入电压	Vcc	-	4.25	-	10	V
		Charge mode,Rprog=10K	-	200	400	μA
输入电流	Icc	Standby mode	-	100	200	μΑ
1曲八七切	100	Shutdown mode(Rprog not connected,Vcc <vbat or="" td="" vcc<vuv)<=""><td>-</td><td>25</td><td>60</td><td>μA</td></vbat>	-	25	60	μA
输出控制电压	Vfloat	0°C <ta<85°c, ibat="40mA</td"><td>4.16</td><td>4.2</td><td>4.25</td><td>V</td></ta<85°c,>	4.16	4.2	4.25	V
		Rprog=10k,Current mode	93	100	107	mA
		Rprog=2k,Current mode	465	500	535	mA
BAT端电流	lbat	Standby mode, Vbat=4.2V	0	-2.5	-6	μA
DAT编电视	IDat	Shutdown mode	-	1	2	μA
		Battery reverse mode, VBAT=-4V		0.7	-	mA
		Sleep mode,Vcc=0V	-	1	2	μA
涓流充电电流	Itrikl	Vbat <vtrikl,rprog=2k< td=""><td>100</td><td>107</td><td>mA</td></vtrikl,rprog=2k<>		100	107	mA
涓流充电极限电压	Vtrikl	Rprog=10K, Vbat Rising	2.7	2.8	2.9	V
涓流充电迟滞电压	Vtrhys	Rporg=10k	50	75	100	mV
电源低电闭锁阈值电压	Vuv	From Vcc low to high	3.7	3.8	3.9	V
电源低电阈值电压迟滞电压	Vuvhys	-	80	100	120	mV
手动关闭阈值电压	Vmsd	PROG pin rising	1.15	1.21	1.30	V
于列大的関值电压	VIIISU	PROG pin falling	0.9	1.0	1.1	V
V Vb-+	Vasd	Vcc from low to high	160	210	260	mV
Vcc-Vbat停止工作阈值电压	vaso	Vcc from high to low	70	100	130	mV
幼 型 国 唐 市 法	Ita was /I a	Rprog=10k	0.085	0.10	0.115	mA/mA
终端阈值电流	Iterm/Ic	Rprog=2k	0.085	0.10	0.115	mA/mA
PROG端电压	Vprog	Rprog=10k, Current mode	0.93	1.0	1.07	V
CHRG端弱下拉电流	Ichrg	Vchrg=5V	-	2	-	mA
电池再充电迟滞电压	Δ Vrecg	VFLOAT - VRECHRG	50	100	150	mV


■ 功能框图

■ 特性曲线

■ 应用信息

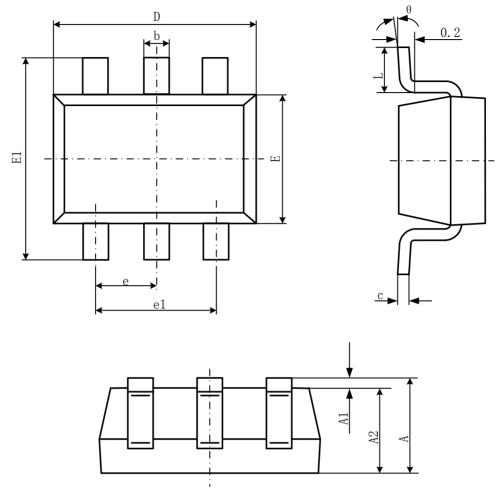
● 设定充电电流

在恒流模式,计算充电电流的公式为: ICH = 1000 / RPROG。其中,ICH 表示充电电流,单位为安培,RPROG 表示 PROG 管脚到地的电阻,单位为欧姆。例如,如果需要 500 毫安的充电电流,可按下面的公式计算: RISET = 1000/0.5 = 2KΩ

为了保证良好的稳定性和温度特性,RPROG 建议使用精度为 1%的金属膜电阻。 通过测量 PROG 管脚的电压可以检测充电电流。充电电流可以用下面的公式计算: ICH = (VPROG / RPROG) × 1000

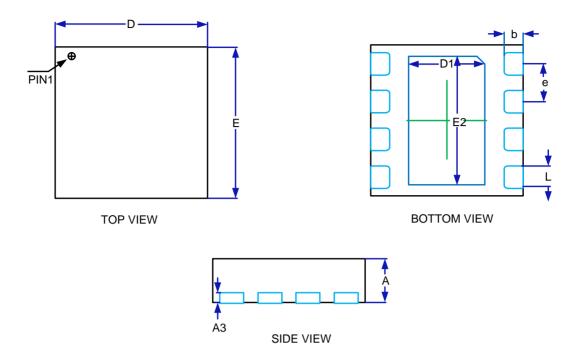
● 输入输出电容

建议电容值:输入电容 4.7uF,输出电容 10uF,同时 PCB 布板要求这连个电容要尽量靠近芯片;


● 状态指示

状态	充电	充满	无电池	故障
CHRG (红)	亮	灭	闪	灭
DONE (绿)	灭	亮	亮	灭

■ 封装信息


• SOT23-6L

Cymbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Z	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

DFN2020-8L

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	0.527	0.577	0.021	0.023	
A3	0.12	0.127REF		5REF	
b	0.20	0.30	0.008	0.012	
D	1.9	2.1	0.075	0.083	
E	1.9	2.1	0.075	0.083	
D2	0.9	1.1	0.035	0.043	
E2	1.6	1.8	0.063	0.071	
е	0.50TYP		0.02	TYP	
L	0.25	0.35	0.010	0.014	