

2A 高效率升压 DC/DC 电压调整器

■ 产品概述

LN3608 是一款微小型、高效率、升压型 DC/DC 调整器。 电路由电流模 PWM 控制环路,误差放大器,斜波补偿电路, 比较器和功率开关等模块组成。该芯片可在较宽负载范围内 高效稳定的工作,内置一个 4A 的功率开关和软启动保护电 路。高达 93%的转换效率能够高效的延长电池寿命。可以通 过调整两个外加电阻来设定输出电压。

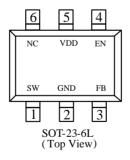
■ 用途

- 便携式移动设备
- 无线通信设备
- 电池后备电源

■ 产品特点

- 效率高达 92%
- 输出电压可升到 28V
- 输入电压范围 2-24V
- 1.2MHz 的固定开关频率
- 自动 PWM/PFM 切换模式
- 功率通路支持短路保护

■ 封装

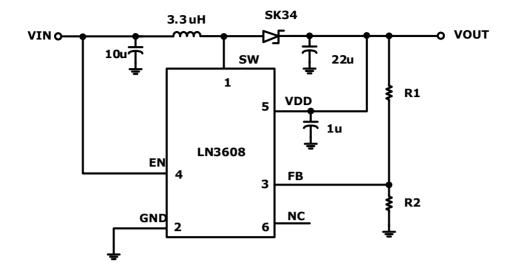

• SOT23-6L

■ 订购信息

LN3608 12

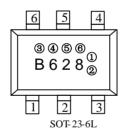
数字项目	符号	描述	
1)	Α	外置反馈,反馈电压 0.6V	
2	R	卷带方向正向	
	L	卷带方向反向	

■ 引脚配置

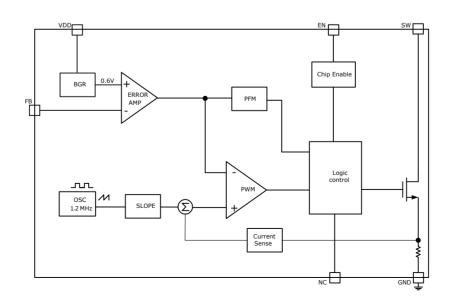


■ 引脚说明

脚位顺序	引脚名称	功能描述	
5	VDD	输入端	
3	FB	反馈端	
2	GND	接地端	
1	SW	开关引脚	
4	EN	使能端, 高有效	
6	NC	悬空	


■ 典型应用电路

$$VOUT = VFB \times \left(1 + \frac{R1}{R2}\right)$$


注:芯片 5 脚 VDD 端可以接 VOUT 也可以接 VIN,当 VIN<5V 时,建议接 VOUT 来增强驱动能力。

■ 打印信息

注: ①②③④⑤⑥码点为产品质量信息码

■ 功能框图

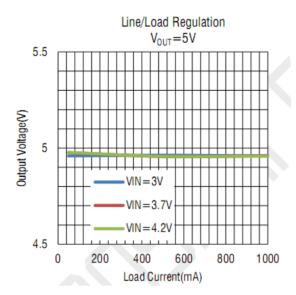
■ 绝对最大额定值

项目	符号	绝对最大额定值	单位	
输入电压	VIN	Vss-0.3∼Vss+24		
输出电压	VOUT	Vss-0.3∼Vss+28	V	
抽 山 电压	VSW	Vss-0.3∼Vss+28		
SW端开关电流	ISW	3.5	А	
容许功耗	PD	PD 250		
工作环境温度	Topr	- 40∼+80	°C	
保存温度	Tstg	-40~+125		

■ 电学特性参数


(VIN=5V, Ta=25℃, 除非另有指定)

项目	符号	条件	最小值	典型值	最大值	单位
输出电压	VOUT	-	2.5		28	V
输入电压	VIN	-	2	-	24	V
输入欠压保护	UVLO_F	-	1.7	-	2	V
欠压保护迟滞	UVLO_HYS	-	-	110	-	mV
关断电流	IOFF	VEN <venl< td=""><td>-</td><td>-</td><td>1</td><td>μΑ</td></venl<>	-	-	1	μΑ
无负载电流	IC	VIN=4.2V, VOUT=5V	-	90	-	μΑ
反馈基准电压	VR	VOUT=5V	588	600	612	mV
开关频率	FS	IOUT=1A	-	1.2	-	MHz
最大占空比	DMAX	VFB=0V	-	90	-	%
功率管内阻	RDSON	VIN=5V	-	80	150	mΩ
开关电流	ISW	VIN=5V	3.5	-	-	Α
线性调整度	ΔVLINE	IOUT=1.2A,VIN=3V 到 4.2V	-	0.38	-	%
负载调整度	ΔVLOAD	VIN=3.6V,IOUT=10mA 到 1.2A	-	0.41	-	%
EN 高电平	VENH	VIN=3.6V	1.2	-	-	V
EN 低电平	VENL	VIN=3.6V	-	-	0.5	V
SW 端漏电流	ISW_L	VSW=20V	-	-	1	uA
过热关断温度	TSHD	VIN=3.6V, IOUT=10mA	-	160	-	$^{\circ}$



■ 典型特性曲线

● 效率

线性调整度和负载调整度

■ 应用信息

● 输出电压的设置

通过 FB 的外部电阻分压,输出电压值可根据以下公式计算:

$$VOUT = VFB \times \left(1 + \frac{R1}{R2}\right)$$
, R1 取百 K 级电阻,例如:R2=100K,R1=1.4M,VFB=0.6V,则 VOUT=9V

● 电感选择

推荐电感值范围选择 3.3uH 到 22uH。电感选择主要考虑较小的 DCR 电阻以确保较高的效率。

● 输入输出电容

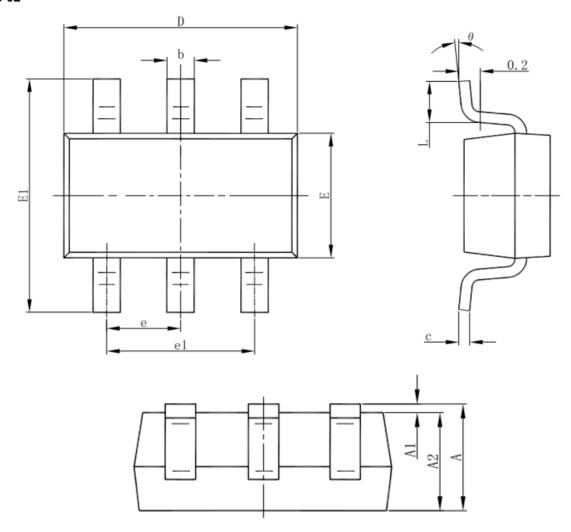
输入电容和输出电容的容值建议使用 22uF 以上,为了得到更小的输出纹波,建议输出使用陶瓷电容。

5 脚端需要 1uF 电容做稳压用,建议使用陶瓷电容。

● 二极管

● 续流二极管请使用快速响应的肖特基二极管,正向压降越低则负载效率越高。针对不同的输出电压,注意续流二极管的反向耐压选择要足够高(>VOUT+5V)以防止反向漏电或者击穿。

● PCB 布局


- 为了得到更好的使用效果,PCB 布局主要注意事项如下:
- 输入电容和输出电容尽可能靠近芯片引脚;
- 从 VIN 到电感 L 再到 VOUT 的功率通路,走线尽可能短而粗;
- SW 引脚有高频开关信号,注意和板上其他元件的隔离。

NO.: NL-QR-730-16 VER: 17C04 5 http://www.natlinear.com

■ 封装信息

• SOT-23-6L

Symbol	Dimensions In	n Millimeters	Dimensions	s In Inches
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

■ 版本历史

序号	版本号	修改日期	修改内容	修改人	批准人
01	01	2018.08.20			