

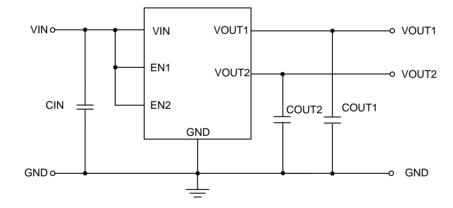
双 300mA 高速低压差 CMOS 电压稳压器

■ 产品概述

LN1182 系列是使用 CMOS 技术开发的双高速、低压差,高精度输出电压,低消耗电流正电压型电压稳压器。由于内置有低通态电阻晶体管,因而压差低,能够获得较大的输出电流。为了使负载电流不超过输出晶体管的电流容量,内置了过载电流保护电路、短路保护电路。每一个电压调整器可独立通过修条来调整输出电压,电压输出范围为 1.0V 到6.0V。每一个电压调整器可独立使能,因而降低了系统功耗。LN1182 系列采用 SOT23-6L 等小型封装,故可高密度安装。

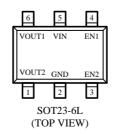
■ 用途

- 移动电话
- 无绳电话及广播通信设备
- 照相机、视频录制设备
- 便携式游戏机
- 便携式 AV 设备
- PDAs


■ 典型应用电路

■ 产品特点

- 可选择输出电压 可以在 1.0~6.0V 的范围内选择,步 进为 0.05 V
- 输出电压精度高 可达±2.0% 精度
- 输入输出压差低 180 mV 典型值(输出为 3.0V 的产品, lour=100mA 时)
- 高纹波抑制比 70dB (1 kHz)● 消耗电流少 120µA (TYP.)
- 最大输出电流 可输出 300mA(V_{IN} ≥ V_{OUT}+1v)
- ◆ 待机电流 小于 0.1µA
- 内置保护 内置过流保护和短路保护电路● 采用小型封装 SOT23-6L 以及客户要求的封装


■ 封装

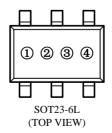
SOT23-6L

- 注意: 1.上述连接图以及参数并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。
 - 2. 输入电容器(CIN): 1.0μF以上; 输出电容器(COUT): 2.2 μF以上(钽电容器)
 - 3.一般而言,线性稳压电源因选择外接零件的不同有可能引起振荡。上述电容器使用前请确认在应用电路上不发生振荡。

■ 引脚配置

■ 引脚分配

引脚号	引脚名	功能	
SOT23-6L	71,044-61	か肥	
4	EN1	使能端 1	
5	VIN	电源输入	
3	EN2	使能端 2	
1	VOUT2	输出 2	
2	GND	地	
6	VOUT1	输出 1	


■ 订购信息

LN1182 ①2345678-9

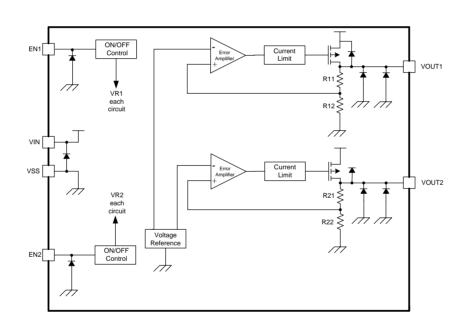
数字项目	描述	符号	描述
		Е	带下拉电阻的高有效
	电压调整器 1, EN 类型	F	不带下拉电阻的高有效
1		G	带上拉电阻的低有效
		Н	不带上拉电阻的低有效
		E	带下拉电阻的高有效
2	古口田敷思 2 EN 米刑	F	不带下拉电阻的高有效
2)	电压调整器 2, EN 类型	G	带上拉电阻的低有效
		Н	不带上拉电阻的低有效
34	电压调整器 1 输出电压	13~50	例如: 30 代表输出电压为 3.0V
(3)(4)	电压调整备 制山电压	□正屯压 13~50	33 代表输出电压为 3.3V
56	电压调整器 2 输出电压	13~50	例如: 30 代表输出电压为 3.0V
90	电压调定备 2 相山电压	15. 300	33 代表输出电压为 3.3V
(7)	封装类型	M	SOT23-6L (Vout1>Vout2)
U	到农 <u>大</u> 生	Ν	SOT23-6L (Vout1 <vout2)< td=""></vout2)<>
	四 (4) 子宁	R	卷带: 正向
8	器件方向	L	卷带: 反向
9	塑封料类型	G	绿料

■ 打印信息

• SOT-23-6L

① 表示产品系列

符号	产品描述
1	LN1182 ♦♦♦♦♦ ♦


② ③ 表示公司内部定义序列号集

打印	符号	内部序列号集	产品描述
2	3	内部位列与来	广阳祖处
С	2	C2	LN1182EE2025
С	0	C0	LN1182EE2520
0	1	01	LN1182FF2825
1	8	18	LN1182FF2528
С	3	C3	LN1182FF3315
Х	K	XK	LN1182FF2818
Х	3	Х3	LN1182FF2815
2	K	2K	LN1182FF3318

④ 表示产品批号

数字 0-9, A-Z, 倒写数字 0-9, A-Z, 然后重复(G, I, J, O, Q, W 除外)

■ 功能框图

■ 绝对最大额定值

项目	符号	绝对最大额定值		单位
输入电压	V _{IN}	V _{SS} -0.3∼V _{SS} +10		
	V _{EN}	V _{SS} -0.3∼V _{IN} +0.3		V
输出电压	V _{OUT}	V_{SS} -0.3 \sim V_{IN} +0.3		
输出电流	I _{OUT1} +I _{OUT2}	700	700	
容许功耗	P _D	SOT23-6L 250		mW
工作温度	Topr	- 40∼+85	-40∼+85	
保存温度	Tstg	-40∼+125		°C

注意: 绝对最大额定值是指在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

NO.: NL-QR-830-19 VER: 19C01 3 <u>www.natlinear.com</u>

■ 电学特性参数

(TA=25°C unless otherwise noted)

项目	符号	条件	最小值	典型值	最大值	单位	
输出电压*1	V _{OUT(E)}	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =10 mA	V _{OUT(S)} ×0.98	V _{OUT(S)}	V _{OUT(S)} ×1.02	V	
输出电流*2	I _{OUT}	V _{IN} ≥V _{OUT(S)} +1.0 V	300 *5	-	-	mA	
松)松山田羊49		I _{OUT} =50 mA	-	0.06	0.10	\/	
输入输出压差*3	V_{drop}	I _{OUT} =100 mA	-	0.15	0.20	0 V	
输入稳定度	$\frac{\Delta V_{OUT1}}{\Delta V_{IN} \bullet V_{OUT}}$	V _{OUT(S)} +0.5 V ≤V _{IN} ≤7 V I _{OUT} =10 mA	-	0.01	0.20	%/V	
负载稳定度	ΔV_{OUT2}	V _{IN} =V _{OUT(S)} +1.0 V 1.0 mA ≤I _{OUT} ≤100 mA	-	15	50	mV	
输出电压	$\Delta V_{\scriptscriptstyle OUT}$	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =10 mA		±100		nnm/°C	
温度系数*4	$\Delta Ta \bullet V_{OUT}$	-40°C ≤ <i>Ta</i> ≤85°C	-	±100	-	ppm/℃	
工作消耗电流	I _{SS1}	V _{IN} =V _{OUT(S)} +1.0 V	-	120	-	μA	
关断电流	I _{STB}	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$, $V_{EN}=VSS$	-	0.01	1	μA	
输入电压	V _{IN}	-	2.0	-	7	V	
纹波抑制率	PSRR	$V_{IN}=V_{OUT(S)}+1.0 \text{ V}, \text{ f=1 kHz}$ $Vrip=0.5 \text{ Vrms}, I_{OUT}=30 \text{ mA}$	-	70	-	dB	
短路电流	I _{short}	$V_{IN}=V_{OUT(S)}+1.0 V,$ $V_{IN}=V_{EN}$	-	300	-	mA	
电流限制*5	llim	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$	-	450	-	mA	
EN 最小高电平	V _{CEH}	-	1.3	-	VIN	V	
EN 最小低电平	V _{CEL}	-	-	-	0.25	V	
EN 端"高"电流	ICEH	V _{IN} =V _{EN} =V _{OUT(T)} +1V	-0.1	-	0.1	μA	
EN 端"低"电流	ICEL	$V_{IN}=V_{EN}=V_{OUT(T)}+1V$, $V_{EN}=VSS$	-0.1	-	0.1	uA	

***1.** V_{OUT(S)}: 设定输出电压值 V_{OUT(E)}: 实际输出电压值

*2. 缓慢增加输出电流, 当输出电压为小于V_{OUT(E)} 的95%时的输出电流值

*3. $V_{drop} = V_{IN1} - (V_{OUT3} \times 0.98)$

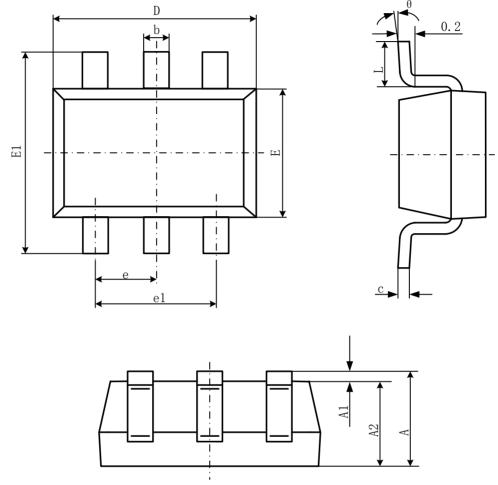
Vouts: V_{IN} = Vout(s)+1.0 V, Iout = 100 mA 时的输出电压值

V_{IN1}: 缓慢下降输入电压, 当输出电压降为V_{OUT3} 的98%时的输入电压

*4. 输出电压的温度变化[mV/℃]按照如下公式算出:

*①. 输出电压的温度变化 *②. 设定输出电压值 *③. 上述输出电压的温度系数

***5.** 意指能够得到此值为止的输出电流。由于封装容许功耗的不同,也有不能满足此值的情况发生。请注意在输出大电流时的封装容许功耗,此规格为设计保证。


NO.: NL-QR-830-19 VER: 19C01 4 www.natlinear.com

■ 特性曲线

■ 封装信息

• SOT23-6L

Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
Z	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°